Modes of Heat Transfer

OBJECTIVES:

- -- To study different modes of heat transfer.
- -- To determine rate of heat transfer in food and non-food materials

Why study heat transfer?

-- to examine how foods are heated and cooled

-- to assess the performance of existing heat exchange equipment

CONDUCTION

- -- Energy transfer at a molecular level
- -- Heating/Cooling of the solid material

The rate of heat flux (rate of heat transfer per unit area) in a solid object is proportional to the temperature gradient, this can be stated mathematically as,

We may remove the proportionality by using a constant 'k', to obtain, Fourier's Law

where

- q_x = rate of heat transfer in the x direction by conduction, W
- k = thermal conductivity, W/mC
- A = area (normal to x-direction) through which heat flows, m^2
- T = temperature, C
- x = length, variable, m

SIGN CONVENTION

Temperature

Thermal Conductivity, k unit: W/mC

Water: k = 0.597 W/mC

Insulating materials: k = 0.035 - 0.173 W/mC

For foods

 $k = 0.25 m_c + 0.155 m_p + 0.16 m_f + 0.135 m_a + 0.58 m_m$

Where m is mass fraction and subscripts c: carbohydrate, p: protein, f: fat, a: ash, m: moisture.

CONVECTION

Fluid flow over a solid body -- heat transfer between a solid and a fluid.

Newton's Law of Cooling:

where: h is convective heat transfer coefficient (W/m²C), A is area (m²), T_p is plate surface temperature (°C), T_{α} is surrounding fluid temperature (°C).

Forced Convection – Free (Natural) Convection –

Fluid condition	h (W/m²C)
Air, free convection	5-25
Water, free convection Water, forced convection	20-100 50-10,000
Condensing water vapor	5,000-100,000

RADIATION

Heat transfer between two surfaces by emission and later absorption of electromagnetic radiation

requires no physical mediumStefen-Boltzmann Equation:

where σ = Stefan-Boltzmann's constant, 5.669x10^{-8} W/m^2 K^4

 ε = emissivity, (varies from 0 to 1) dimensionless

- T_1 = temperature of surface 1, Absolute
- T_2 = temperature of surface 2, Absolute